p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42⋊4C8, C43.2C2, (C4×C8)⋊11C4, C4.14(C4×C8), (C2×C4).89C42, (C2×C42).30C4, C4.17(C8⋊C4), C42.339(C2×C4), (C2×C4).89M4(2), C2.2(C42⋊4C4), C22.18(C22×C8), C22.26(C2×C42), C4.67(C42⋊C2), (C2×C42).984C22, (C22×C8).468C22, C23.247(C22×C4), C22.34(C2×M4(2)), C2.1(C42.12C4), C4○2(C22.7C42), (C22×C4).1600C23, C22.45(C42⋊C2), C22.7C42.47C2, C42○(C22.7C42), C2.5(C2×C4×C8), (C2×C4×C8).11C2, C2.4(C2×C8⋊C4), (C2×C4).58(C2×C8), (C2×C8).202(C2×C4), (C2×C4).910(C4○D4), (C22×C4).504(C2×C4), (C2×C4).590(C22×C4), (C2×C42)○(C22.7C42), SmallGroup(128,476)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊4C8
G = < a,b,c | a4=b4=c8=1, ab=ba, cac-1=ab2, bc=cb >
Subgroups: 188 in 148 conjugacy classes, 108 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C4×C8, C2×C42, C2×C42, C22×C8, C22.7C42, C43, C2×C4×C8, C42⋊4C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, M4(2), C22×C4, C4○D4, C4×C8, C8⋊C4, C2×C42, C42⋊C2, C22×C8, C2×M4(2), C42⋊4C4, C2×C4×C8, C2×C8⋊C4, C42.12C4, C42⋊4C8
(1 117 99 33)(2 62 100 18)(3 119 101 35)(4 64 102 20)(5 113 103 37)(6 58 104 22)(7 115 97 39)(8 60 98 24)(9 27 121 111)(10 92 122 56)(11 29 123 105)(12 94 124 50)(13 31 125 107)(14 96 126 52)(15 25 127 109)(16 90 128 54)(17 87 61 43)(19 81 63 45)(21 83 57 47)(23 85 59 41)(26 70 110 75)(28 72 112 77)(30 66 106 79)(32 68 108 73)(34 88 118 44)(36 82 120 46)(38 84 114 48)(40 86 116 42)(49 78 93 65)(51 80 95 67)(53 74 89 69)(55 76 91 71)
(1 91 87 27)(2 92 88 28)(3 93 81 29)(4 94 82 30)(5 95 83 31)(6 96 84 32)(7 89 85 25)(8 90 86 26)(9 33 76 17)(10 34 77 18)(11 35 78 19)(12 36 79 20)(13 37 80 21)(14 38 73 22)(15 39 74 23)(16 40 75 24)(41 109 97 53)(42 110 98 54)(43 111 99 55)(44 112 100 56)(45 105 101 49)(46 106 102 50)(47 107 103 51)(48 108 104 52)(57 125 113 67)(58 126 114 68)(59 127 115 69)(60 128 116 70)(61 121 117 71)(62 122 118 72)(63 123 119 65)(64 124 120 66)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
G:=sub<Sym(128)| (1,117,99,33)(2,62,100,18)(3,119,101,35)(4,64,102,20)(5,113,103,37)(6,58,104,22)(7,115,97,39)(8,60,98,24)(9,27,121,111)(10,92,122,56)(11,29,123,105)(12,94,124,50)(13,31,125,107)(14,96,126,52)(15,25,127,109)(16,90,128,54)(17,87,61,43)(19,81,63,45)(21,83,57,47)(23,85,59,41)(26,70,110,75)(28,72,112,77)(30,66,106,79)(32,68,108,73)(34,88,118,44)(36,82,120,46)(38,84,114,48)(40,86,116,42)(49,78,93,65)(51,80,95,67)(53,74,89,69)(55,76,91,71), (1,91,87,27)(2,92,88,28)(3,93,81,29)(4,94,82,30)(5,95,83,31)(6,96,84,32)(7,89,85,25)(8,90,86,26)(9,33,76,17)(10,34,77,18)(11,35,78,19)(12,36,79,20)(13,37,80,21)(14,38,73,22)(15,39,74,23)(16,40,75,24)(41,109,97,53)(42,110,98,54)(43,111,99,55)(44,112,100,56)(45,105,101,49)(46,106,102,50)(47,107,103,51)(48,108,104,52)(57,125,113,67)(58,126,114,68)(59,127,115,69)(60,128,116,70)(61,121,117,71)(62,122,118,72)(63,123,119,65)(64,124,120,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;
G:=Group( (1,117,99,33)(2,62,100,18)(3,119,101,35)(4,64,102,20)(5,113,103,37)(6,58,104,22)(7,115,97,39)(8,60,98,24)(9,27,121,111)(10,92,122,56)(11,29,123,105)(12,94,124,50)(13,31,125,107)(14,96,126,52)(15,25,127,109)(16,90,128,54)(17,87,61,43)(19,81,63,45)(21,83,57,47)(23,85,59,41)(26,70,110,75)(28,72,112,77)(30,66,106,79)(32,68,108,73)(34,88,118,44)(36,82,120,46)(38,84,114,48)(40,86,116,42)(49,78,93,65)(51,80,95,67)(53,74,89,69)(55,76,91,71), (1,91,87,27)(2,92,88,28)(3,93,81,29)(4,94,82,30)(5,95,83,31)(6,96,84,32)(7,89,85,25)(8,90,86,26)(9,33,76,17)(10,34,77,18)(11,35,78,19)(12,36,79,20)(13,37,80,21)(14,38,73,22)(15,39,74,23)(16,40,75,24)(41,109,97,53)(42,110,98,54)(43,111,99,55)(44,112,100,56)(45,105,101,49)(46,106,102,50)(47,107,103,51)(48,108,104,52)(57,125,113,67)(58,126,114,68)(59,127,115,69)(60,128,116,70)(61,121,117,71)(62,122,118,72)(63,123,119,65)(64,124,120,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );
G=PermutationGroup([[(1,117,99,33),(2,62,100,18),(3,119,101,35),(4,64,102,20),(5,113,103,37),(6,58,104,22),(7,115,97,39),(8,60,98,24),(9,27,121,111),(10,92,122,56),(11,29,123,105),(12,94,124,50),(13,31,125,107),(14,96,126,52),(15,25,127,109),(16,90,128,54),(17,87,61,43),(19,81,63,45),(21,83,57,47),(23,85,59,41),(26,70,110,75),(28,72,112,77),(30,66,106,79),(32,68,108,73),(34,88,118,44),(36,82,120,46),(38,84,114,48),(40,86,116,42),(49,78,93,65),(51,80,95,67),(53,74,89,69),(55,76,91,71)], [(1,91,87,27),(2,92,88,28),(3,93,81,29),(4,94,82,30),(5,95,83,31),(6,96,84,32),(7,89,85,25),(8,90,86,26),(9,33,76,17),(10,34,77,18),(11,35,78,19),(12,36,79,20),(13,37,80,21),(14,38,73,22),(15,39,74,23),(16,40,75,24),(41,109,97,53),(42,110,98,54),(43,111,99,55),(44,112,100,56),(45,105,101,49),(46,106,102,50),(47,107,103,51),(48,108,104,52),(57,125,113,67),(58,126,114,68),(59,127,115,69),(60,128,116,70),(61,121,117,71),(62,122,118,72),(63,123,119,65),(64,124,120,66)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4X | 4Y | ··· | 4AN | 8A | ··· | 8AF |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | M4(2) | C4○D4 |
kernel | C42⋊4C8 | C22.7C42 | C43 | C2×C4×C8 | C4×C8 | C2×C42 | C42 | C2×C4 | C2×C4 |
# reps | 1 | 4 | 1 | 2 | 16 | 8 | 32 | 8 | 8 |
Matrix representation of C42⋊4C8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 4 | 13 |
0 | 0 | 0 | 13 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
15 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 16 | 1 |
0 | 0 | 15 | 1 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,13,0,0,0,0,4,0,0,0,13,13],[16,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[15,0,0,0,0,13,0,0,0,0,16,15,0,0,1,1] >;
C42⋊4C8 in GAP, Magma, Sage, TeX
C_4^2\rtimes_4C_8
% in TeX
G:=Group("C4^2:4C8");
// GroupNames label
G:=SmallGroup(128,476);
// by ID
G=gap.SmallGroup(128,476);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,58,172]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^8=1,a*b=b*a,c*a*c^-1=a*b^2,b*c=c*b>;
// generators/relations